March 29

Augmented Reality

Kevin Watkins
Core Spirit member since Dec 24, 2020
Reading time 15 minutes

Augmented reality (AR) is a live, copy, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. It is related to a more general concept called mediated reality, in which a view of reality is modified (possibly even diminished rather than augmented) by a computer. As a result, the technology functions by enhancing one’s current perception of reality.

By contrast, virtual reality replaces the real world with a simulated one. Augmentation is conventionally in real-time and in semantic context with environmental elements, such as sports scores on TV during a match. With the help of advanced AR technology (e.g. adding computer vision and object recognition) the information about the surrounding real world of the user becomes interactive and digitally manipulable. Artificial information about the environment and its objects can be overlaid on the real world.

Hardware components for augmented reality are: processor, display, sensors and input devices. Modern mobile computing devices like smartphones and tablet computers contain these elements which often include a camera and MEMS sensors such as accelerometer, GPS, and solid state compass, making them suitable AR platforms.

Virtual Reality

Augmented reality (AR) is a live, direct or indirect, view of a physical, real-world environment whose elements are augmented by computer-generated sensory input such as sound, video, graphics or GPS data. It is related to a more general concept called mediated reality, in which a view of reality is modified (possibly even diminished rather than augmented) by a computer. As a result, the technology functions by enhancing oneÕs current perception of reality.

By contrast, virtual reality replaces the real world with a simulated one. Augmentation is conventionally in real-time and in semantic context with environmental elements, such as sports scores on TV during a match. With the help of advanced AR technology (e.g. adding computer vision and object recognition) the information about the surrounding real world of the user becomes interactive and digitally manipulable. Artificial information about the environment and its objects can be overlaid on the real world.

undefined

Various technologies are used in Augmented Reality rendering including optical projection systems, monitors, hand held devices, and display systems worn on one’s person.

Head-mounted

A head-mounted display (HMD) is a display device paired to a headset such as a harness or helmet. HMDs place images of both the physical world and virtual objects over the user’s field of view. Modern HMDs often employ sensors for six degrees of freedom monitoring that allow the system to align virtual information to the physical world and adjust accordingly with the user’s head movements. HMDs can provide users immersive, mobile and collaborative AR experiences.

Eyeglasses

AR displays can be rendered on devices resembling eyeglasses. Versions include eye wear that employ cameras to intercept the real world view and re-display its augmented view through the eye piecesand devices in which the AR imagery is projected through or reflected off the surfaces of the eye wear lens pieces. Google Glass is not intended for an AR experience, but third-party developers are pushing the device toward a mainstream AR experience. After the debut of Google Glass, many other AR devices, Google Glass alternatives, emerged.

Most promising Google Alternatives can be listed as Vuzix M100, Optinvent, Meta Space Glasses, Telepathy, Recon Jet, Glass Up. CrowdOptic, an existing app for smartphones, applies algorithms and triangulation techniques to photo metadata including GPS position, compass heading, and a time stamp to arrive at a relative significance value for photo objects. CrowdOptic technology can be used by Google Glass users to learn where to look at a given point in time.

Contact lenses

Contact lenses that display AR imaging are in development. These bionic contact lenses might contain the elements for display embedded into the lens including integrated circuitry, LEDs and an antenna for wireless communication. Another version of contact lenses, in development for the U.S. Military, is designed to function with AR spectacles, allowing soldiers to focus on close-to-the-eye AR images on the spectacles and distant real world objects at the same time. In 2013, at the Augmented World Expo Conference, a futuristic video named Sight featuring the potential of having augmented reality through contact lenses received the best futuristic augmented reality video award.

Virtual retinal display

A virtual retinal display (VRD) is a personal display device under development at the University of Washington’s Human Interface Technology Laboratory. With this technology, a display is scanned directly onto the retina of a viewer’s eye. The viewer sees what appears to be a conventional display floating in space in front of them.

EyeTap

The EyeTap (also known as Generation-2 Glass) captures rays of light that would otherwise pass through the center of a lens of an eye of the wearer, and substituted each ray of light for synthetic computer-controlled light. The Generation-4 Glass (Laser EyeTap) is similar to the VRD (i.e. it uses a computer controlled laser light source) except that it also has infinite depth of focus and causes the eye itself to, in effect, function as both a camera and a display, by way of exact alignment with the eye, and resynthesis (in laser light) of rays of light entering the eye.

Handheld

Handheld displays employ a small display that fits in a user’s hand. All handheld AR solutions to date opt for video see-through. Initially handheld AR employed fiduciary markers, and later GPS units and MEMS sensors such as digital compasses and six degrees of freedom accelerometerÐgyroscope. Today SLAM markerless trackers such as PTAM are starting to come into use. Handheld display AR promises to be the first commercial success for AR technologies. The two main advantages of handheld AR is the portable nature of handheld devices and ubiquitous nature of camera phones. The disadvantages are the physical constraints of the user having to hold the handheld device out in front of them at all times as well as distorting effect of classically wide-angled mobile phone cameras when compared to the real world as viewed through the eye.

Spatial

Spatial Augmented Reality (SAR) augments real world objects and scenes without the use of special displays such as monitors, head mounted displays or hand-held devices. SAR makes use of digital projectors to display graphical information onto physical objects. The key difference in SAR is that the display is separated from the users of the system. Because the displays are not associated with each user, SAR scales naturally up to groups of users, thus allowing for collocated collaboration between users.

Examples include shader lamps, mobile projectors, virtual tables, and smart projectors. Shader lamps mimic and augment reality by projecting imagery onto neutral objects, providing the opportunity to enhance the object’s appearance with materials of a simple unit- a projector, camera, and sensor.

Other applications include table and wall projections. One innovation, the Extended Virtual Table, separates the virtual from the real by including beam-splitter mirrors attached to the ceiling at an adjustable angle. Virtual showcases, which employ beam-splitter mirrors together with multiple graphics displays, provide an interactive means of simultaneously engaging with the virtual and the real.Many more implementations and configurations make spatial augmented reality display an increasingly attractive interactive alternative.

A SAR system can display on any number of surfaces of an indoor setting at once. SAR supports both a graphical visualization and passive haptic sensation for the end users. Users are able to touch physical objects in a process that provides passive haptic sensation.

Tracking

Modern mobile augmented reality systems use one or more of the following tracking technologies: digital cameras and/or other optical sensors, accelerometers, GPS, gyroscopes, solid state compasses, RFID and wireless sensors. These technologies offer varying levels of accuracy and precision. Most important is the position and orientation of the user’s head. Tracking the user’s hand(s) or a handheld input device can provide a 6DOF interaction technique.

Input devices

Techniques include speech recognition systems that translate a user’s spoken words into computer instructions and gesture recognition systems that can interpret a user’s body movements by visual detection or from sensors embedded in a peripheral device such as a wand, stylus, pointer, glove or other body wear.

Computer

The computer analyzes the sensed visual and other data to synthesize and position augmentations.

Software and Algorithms

A key measure of AR systems is how realistically they integrate augmentations with the real world. The software must derive real world coordinates, independent from the camera, from camera images. That process is called image registration which uses different methods of computer vision, mostly related to video tracking.= Many computer vision methods of augmented reality are inherited from visual odometry. Usually those methods consist of two parts.

First detect interest points, or fiduciary markers, or optical flow in the camera images. First stage can use feature detection methods like corner detection, blob detection, edge detection or thresholding and/or other image processing methods. The second stage restores a real world coordinate system from the data obtained in the first stage.

Some methods assume objects with known geometry (or fiduciary markers) present in the scene. In some of those cases the scene 3D structure should be precalculated beforehand. If part of the scene is unknown simultaneous localization and mapping (SLAM) can map relative positions. If no information about scene geometry is available, structure from motion methods like bundle adjustment are used. Mathematical methods used in the second stage include projective (epipolar) geometry, geometric algebra, rotation representation with exponential map, kalman and particle filters, nonlinear optimization, robust statistics.

Augmented Reality Markup Language (ARML) is a data standard developed within the Open Geospatial Consortium (OGC), which consists of an XML grammar to describe the location and appearance of virtual objects in the scene, as well as ECMAScript bindings to allow dynamic access to properties of virtual objects.

To enable rapid development of Augmented Reality Application, some software development kits (SDK) have emerged. Some of the well known AR SDKs are offered by Metaio, Vufoia, Wikitude and Layar.

Applications

Archaeology

AR can be used to aid archaeological research, by augmenting archaeological features onto the modern landscape, enabling archaeologists to formulate conclusions about site placement and configuration. Another application given to AR in this field is the possibility for users to rebuild ruins, buildings, or even landscapes as they formerly existed.

Architecture

AR can aid in visualizing building projects. Computer-generated images of a structure can be superimposed into a real life local view of a property before the physical building is constructed there. AR can also be employed within an architect’s work space, rendering into their view animated 3D visualizations of their 2D drawings. Architecture sight-seeing can be enhanced with AR applications allowing users viewing a building’s exterior to virtually see through its walls, viewing its interior objects and layout.

Art

AR technology has helped disabled individuals create art by using eye tracking to translate a user’s eye movements into drawings on a screen. An item such as a commemorative coin can be designed so that when scanned by an AR-enabled device it displays additional objects and layers of information that were not visible in a real world view of it. In 2013, L’Oreal used CrowdOptic technology to create an augmented reality at the seventh annual Luminato Festival in Toronto, Canada.

Commerce

AR can enhance product previews such as allowing a customer to view what’s inside a product’s packaging without opening it. AR can also be used as an aid in selecting products from a catalog or through a kiosk. Scanned images of products can activate views of additional content such as customization options and additional images of the product in its use. AR is used to integrate print and video marketing. Printed marketing material can be designed with certain “trigger” images that, when scanned by an AR enabled device using image recognition, activate a video version of the promotional material.

Construction

With the continual improvements to GPS accuracy, businesses are able to use augmented reality to visualize geo-referenced models of construction sites, underground structures, cables and pipes using mobile devices. Following the Christchurch earthquake, the University of Canterbury released, CityViewAR, which enabled city planners and engineers to visualize buildings that were destroyed in the earthquake. Not only did this provide planners with tools to reference the previous cityscape, but it also served as a reminder to the magnitude of the devastation caused, as entire buildings were demolished.

Education

Augmented reality applications can complement a standard curriculum. Text, graphics, video and audio can be superimposed into a student’s real time environment. Textbooks, flashcards and other educational reading material can contain embedded ÒmarkersÓ that, when scanned by an AR device, produce supplementary information to the student rendered in a multimedia format.

Students can participate interactively with computer generated simulations of historical events, exploring and learning details of each significant area of the event site. AR can aid students in understanding chemistry by allowing them to visualize the spatial structure of a molecule and interact with a virtual model of it that appears, in a camera image, positioned at a marker held in their hand. Augmented reality technology also permits learning via remote collaboration, in which students and instructors not at the same physical location can share a common virtual learning environment populated by virtual objects and learning materials and interact with another within that setting.

Everyday

Since the 1970s and early 1980s, Steve Mann has been developing technologies meant for everyday use i.e. “horizontal” across all applications rather than a specific “vertical” market. Examples include Mann’s “EyeTap Digital Eye Glass”, a general-purpose seeing aid that does dynamic-range management (HDR vision) and overlays, underlays, simultaneous augmentation and diminishment (e.g. diminishing the electric arc while looking at a welding torch)

Gaming

Augmented reality allows gamers to experience digital game play in a real world environment. In the last 10 years there has been a lot of improvements of technology, resulting in better movement detection and the possibility for the Wii to exist, but also direct detection of the player’s movements.

Industrial Design

AR can help industrial designers experience a product’s design and operation before completion. Volkswagen uses AR for comparing calculated and actual crash test imagery. AR can be used to visualize and modify a car body structure and engine layout. AR can also be used to compare digital mock-ups with physical mock-ups for finding discrepancies between them.

Medical

Augmented Reality can provide the surgeon with information, which are otherwise hidden, such as showing the heartbeat rate, the blood pressure, the state of the patient’s organ, etc. AR can be used to let a doctor look inside a patient by combining one source of images such as an X-ray with another such as video. Examples include a virtual X-ray view based on prior tomography or on real time images from ultrasound and confocal microscopy probes or visualizing the position of a tumor in the video of an endoscope. AR can enhance viewing a fetus inside a mother’s womb.

Military

In combat, AR can serve as a networked communication system that renders useful battlefield data onto a soldier’s goggles in real time. From the soldier’s viewpoint, people and various objects can be marked with special indicators to warn of potential dangers. Virtual maps and 360¡ view camera imaging can also be rendered to aid a soldier’s navigation and battlefield perspective, and this can be transmitted to military leaders at a remote command center.

Navigation

AR can augment the effectiveness of navigation devices. Information can be displayed on an automobile’s windshield indicating destination directions and meter, weather, terrain, road conditions and traffic information as well as alerts to potential hazards in their path. Aboard maritime vessels, AR can allow bridge watch-standers to continuously monitor important information such as a ship’s heading and speed while moving throughout the bridge or performing other tasks.

Office workplace

AR can help facilitate collaboration among distributed team members in a work force via conferences with real and virtual participants. AR tasks can include brainstorming and discussion meetings utilizing common visualization via touch screen tables, interactive digital whiteboards, shared design spaces, and distributed control rooms.

Sports and Entertainment

AR has become common in sports telecasting. Sports and entertainment venues are provided with see-through and over lay augmentation through tracked camera feeds for enhanced viewing by the audience. Examples include the yellow “first down” line seen in television broadcasts of American football games showing the line the offensive team must cross to receive a first down. AR is also used in association with football and other sporting events to show commercial advertisements overlaid onto the view of the playing area. Sections of rugby fields and cricket pitches also display sponsored images. Swimming telecasts often add a line across the lanes to indicate the position of the current record holder as a race proceeds to allow viewers to compare the current race to the best performance. Other examples include hockey puck tracking and annotations of racing car performance and snooker ball trajectories.

AR can enhance concert and theater performances. For example, artists can allow listeners to augment their listening experience by adding their performance to that of other bands/groups of users.

The gaming industry has benefited a lot from the development of this technology. A number of games have been developed for prepared indoor environments. Early AR games also include AR air hockey, collaborative combat against virtual enemies, and an AR-enhanced pool games. A significant number of games incorporate AR in them and the introduction of the smartphone has made a bigger impact.

Task support

Complex tasks such as assembly, maintenance, and surgery can be simplified by inserting additional information into the field of view. For example, labels can be displayed on parts of a system to clarify operating instructions for a mechanic who is performing maintenance on the system. Assembly lines gain many benefits from the usage of AR. In addition to Boeing, BMW and Volkswagen are known for incorporating this technology in their assembly line to improve their manufacturing and assembly processes. Big machines are difficult to maintain because of the multiple layers or structures they have. With the use of AR the workers can complete their job in a much easier way because AR permits them to look through the machine as if it was with x-ray, pointing them to the problem right away.

Television

Weather visualizations were the first application of Augmented Reality to television. It has now become common in weather forecasting to display full motion video of images captured in real-time from multiple cameras and other imaging devices. Coupled with 3D graphics symbols and mapped to a common virtual geospace model, these animated visualizations constitute the first true application of AR to TV.

Augmented reality has also become common in sports telecasting. Sports and entertainment venues are provided with see-through and overlay augmentation through tracked camera feeds for enhanced viewing by the audience. Examples include the yellow “first down” line seen in television broadcasts of American football games showing the line the offensive team must cross to receive a first down. AR is also used in association with football and other sporting events to show commercial advertisements overlaidonto the view of the playing area. Sections of rugby fields and cricket pitches also display sponsored images. Swimming telecasts often add a line across the lanes to indicate the position of the current record holder as a race proceeds to allow viewers to compare the current race to the best performance. Other examples include hockey puck tracking and annotations of racing car performance and snooker ball trajectories.

Augmented reality is starting to allow Next Generation TV viewers to interact with the programs they are watching. They can place objects into an existing program and interact with these objects, such as moving them around. Avatars of real persons in real time who are also watching the same program.

Tourism and sightseeing

Augmented reality applications can enhance a user’s experience when traveling by providing real time informational displays regarding a location and its features, including comments made by previous visitors of the site. AR applications allow tourists to experience simulations of historical events, places and objects by rendering them into their current view of a landscape.[ AR applications can also present location information by audio, announcing features of interest at a particular site as they become visible to the user.

Translation

AR systems can interpret foreign text on signs and menus and, in a user’s augmented view, re-display the text in the user’s language. Spoken words of a foreign language can be translated and displayed in a user’s view as printed subtitles.

by Crystal Links

Comments

Leave your questions here

To write a comment you must
or
Services
Category filter
Concern filter
Type filter
Sort
 
All categories
Art Therapy
$50 USD
Artist Teacher Workshop Or Tutoring

“Life Force” guiding our history, our body and spirits. Self portrait art, life drawing from the live model, gesture, and plein air painting. And extended cont…

Bryan Prillwitz
United States of America flag icon
Tarot Reading
$100 USD
Timeline Reading

EGYPTIAN TAROT READINGS using unique methods developed by Nelise Carbonare, a Brazilian healer with more than 40 years of experience in tarot consultations, as…

Nelise Carbonare
United States of America flag icon
Tarot Reading
$120 USD
THE SYNERGY OF THE PYRAMID

THE SYNERGY OF THE PYRAMID focuses on a specific relationship: One side for the consultant and one for their partner. (the partner does not need to be present …

Nelise Carbonare
United States of America flag icon
Tarot Reading
$10 USD
Pick one card

Many questions can be answer with just one Arcane.

Do you want to try?

Nelise Carbonare
United States of America flag icon
Personal Development Coaching
$50 USD
Spiritual Coaching - Removing Energy Blocks - Expansion

> “Who looks outside dreams. Who looks inside awakens.” Jung

Spiritual coaching is about moving you into a profound state of empowerment and involution m…

Kimla Rose (Kim Desrosiers)
United States of America flag icon
Life Coaching
$10 USD
Life Purpose and Soul Wisdom

What is your deeper truth, your deeper knowing, your MOJO, your deepest desires, those feelings that you can’t explain but that are so pure and so clear…or may…

Anna Beale
United States of America flag icon
Wellness Coaching
$10 USD
Your Missing Manual for Health & Life!

Are you constantly reading books, blogs and listening to podcasts trying to figure out what to do to be healthy?

With so much conflicting information out ther…

Pamela Malo
United States of America flag icon
Nutritional Therapy
$150 USD
Nutritional Therapy Consultation

Hi my name is Aria and I am the founder of Heal with Nutrition. I am a registered Nutritional Therapist and a Naturopath who has a passion on Nutrition and Hea…

Aria Alexandrou
United Kingdom of Great Britain and Northern Ireland flag icon
Tarot Reading
$10 USD
THOTH AND HERMETIC DECKS READING

With a deep knowledge of hermeticism and being introduced to the kabbalah tradition of the emanation process from the tree of life, I provide a deep insight co…

James Marchiori
Ireland flag icon
Personal Development Coaching
$55 USD
The Bridge to Your Desired Life

This is were you get real help with your struggles and life challenges. As life gets harder to cope with, we tend to look for external ways to get through. And…

Mina Mikhail
United States of America flag icon
Naturopathy
$10 USD
Intake Consult

short introduction consult to Integrative Medicine

Femke Neervoort
Netherlands flag icon
Career Coaching
$300 USD
Reset Coaching and Mentoring Programme

12 weeks of bi-weekly 90 minutes 1:1 Coaching and Mentoring. Total cost USD1800 (6x90minutes career coaching and mentoring session)

Are you returning to work …

Carla Martins
United Kingdom of Great Britain and Northern Ireland flag icon
Personal Development Coaching
$120 USD
Spiritual Life Coach Session-Personalized Session

Personalized Sessions

Because Everyone Is Unique

Client-centered sessions based on the area of focus requested by the client.

Each session is a LIVE Sessio…

Deborah Lucero
United States of America flag icon
Reiki
$55 USD
Guidance, Inspiration & Healing

This type of session is a favorite among many of my clients, as it is often times one of the smoothest way to address a challenge to reach a happier and health…

Mina Mikhail
United States of America flag icon
Mediumism
$10 USD
Psychic Readings

I specialize in love, past present future, future, past life, general, tarot, dream interpretation, specific, social, and career readings! Book today for clari…

Holly
United States of America flag icon
Life Coaching
$399 USD
1-on-1 Coaching

The journey started with our discovery call, and You decided: ” I’m ready! Let’s do this!”.

We will engage in 1-on-1 coaching sessions for 90 minutes. In this…

Carla Martins
United Kingdom of Great Britain and Northern Ireland flag icon
Ascension
$88 USD
Ascension Mentor Support

In this session, we come together with similar to a healing session but face to face.

We talk about what issues you are facing at the moment and we delve deep…

Claire C.
Australia flag icon
Spiritual Healing
$177 USD
Energy Healing

I am honored to assist you with intuitive channeled energy healings that support and nurture you on a physical level as well soul and energetic level, each ses…

Claire C.
Australia flag icon
Reiki
$375 USD
Usui Reiki 1st Degree Course

FIRST DEGREE COURSE - The ultimate Reiki course.

Have you ever wondered if you can heal? Have you felt a burning desire to help others? Then you’ve come to th…

Step Into Your Light - Christina Moore
United Kingdom of Great Britain and Northern Ireland flag icon
Life Coaching
$10 USD
Hand Analysis - Startup Session

What does a hand analysis do for me? ​

You will understand yourself and your life purpose. ​You will understand the roots of your triggers and reactionary be…

Brent Bruning, Master Hand Analyst
Switzerland flag icon
Shamanism
$10 USD
Sample Akashic Records Reading for Your Burning Issue

I connect to your Akashic Records and listen to what your guides want to bring to your conscoius attention at this time. Perhaps, it is an insight into why you…

Olga Aydınoğlu
Turkey flag icon
Shamanic Healing
$300 USD
Shamanic Healing Art

What is Shamanic Healing Art?

It is a physical artwork (usually a pastel drawing) I make for you based on the outcome of our online session. This artwork will…

Olga Aydınoğlu
Turkey flag icon
Shamanic Healing
$70 USD
Heal to say "No"

A limits and boundaries shamanic healing session to help you heal relevant wounds and traumas from this and/or other lifetimes, let go of false beliefs, judgem…

Olga Aydınoğlu
Turkey flag icon
Shamanic Healing
$70 USD
Writer's Block Shamanic Healing Session

Before the Session

I do my pre-meditation to find out the main reasons for your writer’s block. (This happens psychically, where I generally just need your na…

Olga Aydınoğlu
5
Turkey flag icon